Azure Computer Vision API 有一組很好的 Demo 來展示對圖片相關的視覺分析,當然還有 客製化的 Computer Vision,可以訓練自己的電腦視覺模型或是領域特定的模型,並且開放成 API 進行服務串接。整個流程就是非常地快速能夠上線,當然如果還想優化,就必須從演算法層級下手了。
以下是進行一個實驗,我們把海岸廢棄物的一張照片進行基本的圖片分析與描述,結果如下:(可以看到它已經有往廢棄物分類的方向辨識,再搭配機械手臂撥動、連續拍攝辨識,效果真是令人期待)
說明
{
"tags":[
"person", "food", "picnic", "people", "sitting", "messy", "table", "group", "cluttered", "items", "grass", "child", "bag", "many", "pile", "woman", "young", "standing", "stuffed", "crowded", "bed", "fruit", "bear", "birthday", "produce", "eating", "bowl", "sandwich", "man", "room", "playing"
],
"captions":[
{
"text":"a group of people sitting at a picnic table",
"confidence":0.7931016
}
]
}
類別 [ { "name": "people_crowd", "score": 0.46484375 } ]
臉部 []
主要色彩背景 "Black"
主要色彩前景 "White"
輔色 #AD2C1E
接下來我們把澎湖南方四島國家公園的照片,進行地景辨識。
這個地方人煙罕至,岸邊卻聚集著許多不知從何而來的海漂垃圾。當我們在進行大規模自動化監控的時候,我們會需要進行地景與分析結果的配對。實驗結果如下:(地景是一系列的線索,根據信心程度排列順序)
{
"categories": [
{
"name": "outdoor_",
"score": 0.01171875,
},
{
"name": "outdoor_oceanbeach",
"score": 0.37890625,
},
{
"name": "outdoor_stonerock",
"score": 0.296875,
}
],
"tags": [
{
"name": "grass",
"confidence": 0.99790191650390625
},
{
"name": "water",
"confidence": 0.974234938621521
},
{
"name": "outdoor",
"confidence": 0.95973360538482666
},
{
"name": "nature",
"confidence": 0.82509434223175049
}
],
"description": {
"tags": [
"grass", "water", "outdoor", "nature", "rock", "river", "standing", "sitting", "small", "bird", "large", "blue", "man", "body", "pool", "walking", "flying", "umbrella", "kite", "people", "board", "white", "ocean", "swimming", "group"
],
"captions": [
{
"text": "a body of water",
"confidence": 0.82268123921942859
}
]
},
"color": {
"dominantColorForeground": "Black",
"dominantColorBackground": "Brown",
"dominantColors": [
"Black"
],
"accentColor": "13445D",
"isBWImg": false
}
}